MTH 512, Spring 2023, 1-1

MTH 512, Exam 2

Ayman Badawi

QUESTION 1. Assume A, B are similar $n \times n$ matrices, say $A = M^{-1}BM$, and assume that A is diagnolizable. Prove that B is diagnolizable.

QUESTION 2. (Transitive property). Given A, B, C are $n \times n$ matrices such that A is similar to B and B is similar to C. Prove that A is similar to C, i.e., show that $A = N^{-1}CN$ for some invertible matrix N.

	0	-4	0	0	0	0]
	1	-5	0	0	0	0
OUESTION 3 Lat A -	0 0 0 -4 0 0					
QUESTION 5. Let A –	0	0	1	-5	0	0
	0 0 0 0 0	0	-4			
QUESTION 3. Let $A =$	0	0	0	0	1	-5

- (i) Find $A^{2023} + 5A^{2021} + 5A^{2021} + 5A^{2020} + 4A^{2019} + 3A^3 + 15A^2 + 13A + I_6$.[Hint: By staring at A, it looks familiar, so $C_A(\alpha)$ and $m_A(\alpha)$ can be determined]
- (ii) Find all eigenvalues of A. For each eigenvalue a of A, find $dim(E_a(A))$.

QUESTION 4. Up to similarity, classify all 5×5 matrices in $R^{5\times 5}$ such that $(A^2 + I_5)(A - 3I_5) = 0_{5\times 5}$. [Hint : Note that all entries of such matrix must be real numbers]

QUESTION 5. Let <, > be the normal dot product on \mathbb{R}^k .

(i) Let $n \ge 2$ and $T : \mathbb{R}^n \to \mathbb{R}^n$ be a symmetric linear transformation, i.e., the standard matrix presentation of T is symmetric. Assume a, b are distinct eigenvalues of T. Let v be a nonzero-vector in $E_a(A)$ and w be a nonzero-vector in $E_b(A)$. Prove that v is orthogonal to w.

QUESTION 6. Let $T : R^2 \to P_2$ such that T(a,b) = (b+2a)x + 3a. Define $\langle f_1, f_2 \rangle_{p_2} = \int_0^1 f_1 f_2 dx$ and $\langle q_1, q_2 \rangle_{R^2} = q_1 \cdot q_2$. Find T^a (the adjoint operator of T)

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com

Question 2: Nove the transitile property. P, d'are intertible matrices, then the A=QBQ support Product PQ is also B = P'CPand invertible $A = \vec{Q} (\vec{P} c l) Q$ them $A = (\vec{a} \vec{p}) C (\vec{p} \vec{Q})$ and since (PQ) = QP-1 then $A = (IQ)^{-1} C (IQ)$ ketting PQ=N we get A=NCN that is A is similar to C.

$$\frac{Q_{uo} \text{ stion } 4:}{(lassify All - 5x5 \text{ modifiess } (h + \frac{1}{3})(A - 3\Gamma) = 0}{(A - 3\Gamma)} = 0$$

$$\frac{let}{(lassify All - 5x5 \text{ modifiess } (h + \frac{1}{3})(A - 3\Gamma) = 0}{(a - 3)} = 0$$

$$\frac{let}{(a + 1)(A - 3)} = 0$$

$$\frac{let}{(a - 3)(A - 3)} = 0$$

$$\frac{let}{(a - 3)(A - 3)} = 0$$

$$\frac{let}{(a - 3)(A - 3)(A - 3)} = 0$$

$$\frac{let}{(a - 3)(A - 3)(A - 3)} = 0$$

$$\frac{let}{(a - 3)(A - 3)(A$$

Note: $m_A(x) \neq (d + 1)$ bis in mission values of A are roots of $m_A(d)$ Value and all eigenvalues of A are roots of $m_A(d)$

excellent		

Question 5:
T:
$$\mathcal{R} \longrightarrow \mathcal{R}$$
 is a symoutric linear transformation.
It A be the standard matrix representation of T
A is symmetric => $A = \overline{A}$
a, b are distinct eigenvalues of T
 $V \in E_a(A)$ so $AV = aV$
 $W \in F_b(A)$ so $AV = aV$
 $W \in F_b(A)$ so $AW = bW$
 $W \in F_b(A)$ so $AW = bW$
 $W \in (A) = AW = bW$
 $W = (A) = AW = bW$
 $V = (A) = AV = aV$
 $(AT(V), W7) = (V, T^{(W)})7$
 $(AV, W7) = (V, T^{(W)})7$
 $(AV, W7) = (V, AW7)$
 $a(V, W7) = (V, AW7)$
 $a(V, W7) = (V, bW7) = b(V, W7)$
 $(AV, W7) = (V, bW7) = b(V, W7)$
 $(AU, W7) = b(V, W7)$
 $(AU, W7) = b(V, W7)$
 $(AU, W7) = b(V, W7)$
 $(A = A ave real)$
 $(A = b)(V, W7) = 0$
 $A = A ave real)$
 $(A = b)(V, W7) = 0$
 $A = A ave real)$
 $(A = b)(V, W7) = 0$
 $A = A ave real)$

$$\frac{Q_{uottion G_{1}}}{T(a,b)} = (b+\lambda e)^{k} + 3u$$

$$\frac{T(a,b)}{T(a,b)} = (b+\lambda e)^{k} + 3u$$

$$\frac{T(a,b)}{T(a,b)} = (b+\lambda e)^{k} + 3u$$
Find T^a (the adjoint operator of T).
$$\frac{T(a,b)}{T(a,b)} = (m, n)$$

$$\frac{T(a,b)}{T(a,b)} = ($$