MTH 512, Exam 2

Ayman Badawi

QUESTION 1. Assume A, B are similar $n \times n$ matrices, say $A=M^{-1} B M$, and assume that A is diagnolizable. Prove that B is diagnolizable.

QUESTION 2. (Transitive property). Given A, B, C are $n \times n$ matrices such that A is similar to B and B is similar to C. Prove that A is similar to C, i.e., show that $A=N^{-1} C N$ for some invertible matrix N.

QUESTION 3. Let $A=\left[\begin{array}{cccccc}0 & -4 & 0 & 0 & 0 & 0 \\ 1 & -5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -4 & 0 & 0 \\ 0 & 0 & 1 & -5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -4 \\ 0 & 0 & 0 & 0 & 1 & -5\end{array}\right]$
(i) Find $A^{2023}+5 A^{2022}+5 A^{2021}+5 A^{2020}+4 A^{2019}+3 A^{3}+15 A^{2}+13 A+I_{6}$.[Hint: By staring at A, it looks familiar, so $C_{A}(\alpha)$ and $m_{A}(\alpha)$ can be determined]
(ii) Find all eigenvalues of A. For each eigenvalue a of A, find $\operatorname{dim}\left(E_{a}(A)\right)$.

QUESTION 4. Up to similarity, classify all 5×5 matrices in $R^{5 \times 5}$ such that $\left(A^{2}+I_{5}\right)\left(A-3 I_{5}\right)=0_{5 \times 5}$. [Hint : Note that all entries of such matrix must be real numbers]

QUESTION 5. Let $<,>$ be the normal dot product on R^{k}.
(i) Let $n \geq 2$ and $T: R^{n} \rightarrow R^{n}$ be a symmetric linear transformation, i.e., the standard matrix presentation of T is symmetric. Assume a, b are distinct eigenvalues of T. Let v be a nonzero-vector in $E_{a}(A)$ and w be a nonzero-vector in $E_{b}(A)$. Prove that v is orthogonal to w.

QUESTION 6. Let $T: R^{2} \rightarrow P_{2}$ such that $T(a, b)=(b+2 a) x+3 a$. Define $<f_{1}, f_{2}>_{p_{2}}=\int_{0}^{1} f_{1} f_{2} d x$ and $<q_{1}, q_{2}>_{R^{2}}=q_{1} \cdot q_{2}$. Find T^{a} (the adjoint operator of T)

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Question 1:
A seems A, B arr ciminilar $n \times n$ matrices, say $A=M^{-1} B M$ and assenve that A is diagndizable. love that B is diag adizable. A is diagnolitable, means f non sin guar matrix Q, and diagonal matrix D sit. $A=Q^{-1} D Q$,
and $A=M^{-1} B M \Leftrightarrow M A M^{-1}=B$

$$
\begin{aligned}
& \text { nod } \begin{aligned}
A & =M B M
\end{aligned} \\
& \text { HMM } B=M\left(Q^{-1} D Q M^{-1}\right. \\
& B=(M Q) D\left(Q M^{-1}\right) \\
& \text { Now, since }\left(Q M^{-1}\right)^{-1}=\left(M^{-1}\right)^{-1} Q^{-1}=M^{\prime \prime} Q^{-1} \\
& B=\left(Q M^{-1}\right)^{-1} D\left(Q M^{-1}\right)
\end{aligned}
$$

$Q H^{-1}$ is an invertible matrix, D jicuponal o B is diagnalizable.
since A is diagndizable, then the minimal polynomial is the product of linear factors. and A is simile to B ancoins, they have the same minimal polynomial is we proved in the Hone ord thus the minimal polynninat of B is the product of linearfodors. Hence B is diagndiz able.

Question 2: prove the transitive property.
suppose $\quad A=Q^{-1} B Q$
P, Dare invertible
nundrices, then the Prodat' PO is also
and

$$
B=l^{-1} c l
$$

then $A=Q^{-1}\left(P^{-1} \subset l\right) Q$ invertible

$$
A=\left(Q Q^{-1}\right)^{-1} C(P Q)
$$

and since $(P Q)^{-1}=Q^{-1} P^{-1}$
then $A=(P Q)^{-1} C(P Q)$
feting $P Q=N$ we git $A=N^{-1} C N$ the is A is similar to C.

Question 3:
i).

$$
\begin{aligned}
A & =C\left(\alpha^{2}+5 \alpha+4\right) \oplus C\left(\alpha^{2}+5 \alpha+4\right) \oplus C\left(\alpha^{2}+5 \alpha+4\right) \\
C_{A}(\alpha) & =\left(\alpha^{2}+5 \alpha+4\right)\left(\alpha^{2}+5 \alpha+4\right)\left(\alpha^{2}+5 \alpha+4\right)=(\alpha+4)^{3}(\alpha+1)^{3}
\end{aligned}
$$

$m_{A}(\alpha)$ is the least ammon multiple of the three minimal β lynomials

$$
m_{A}(\alpha)=\left(\alpha^{2}+5 \alpha+4\right)=(\alpha+4)(\alpha+1)
$$

let $f(\alpha)=\alpha^{2023}+5 \alpha^{2022}+5 \alpha^{2011}+5 \alpha^{2020}+4 \alpha^{2011}+3 \alpha^{3}+15 \alpha^{2}+B \alpha+1$
Hem

$$
\begin{aligned}
f(\alpha) & =\alpha+5 \alpha+5 \alpha+5 \alpha+4 \\
e n(\alpha) & =\alpha^{2019}\left(\alpha^{4}+5 \alpha^{3}+5 \alpha^{2}+5 \alpha+4\right)+3 \alpha^{3}+15 \alpha^{2}+13 \alpha+1 \\
& =\alpha^{2019}\left(\alpha^{2}+1\right)\left(\alpha^{2}+5 \alpha+4\right)+3 \alpha\left(\alpha^{2}+5 \alpha+4\right)+(\alpha+1) \\
f(\alpha) & =\binom{\left.\alpha^{2}+5 \alpha+4\right)\left(\alpha^{2014}\left(\alpha^{2}+1\right)+3 \alpha\right)+\alpha+1}{0}
\end{aligned}
$$

$$
\begin{aligned}
& f(\alpha)=\alpha+1\left(\bmod \alpha^{2}+5 \alpha+4\right) 0 \\
& f(A)=A+B=\left[\begin{array}{cc}
1 & -4 \\
1 & -4 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f(\alpha)=\alpha+1\left(\bmod \alpha^{2}+5 d+4\right) \\
& \text { Hence } \quad f(A)=A+\frac{T}{6}=\left[\begin{array}{ccccc}
1 & -4 & 0 & 0 & 0 \\
1 & -4 & 0 & 0 & 0 \\
0 & 0 & 1 & -4 & 0 \\
0 & 0 & 1 & -4 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & -4
\end{array}\right]
\end{aligned}
$$

ii). $\quad m_{A}(\alpha)=(\alpha+4)(\alpha+1)$ (A is diagnolizuble). so the E ign values of A are $\alpha_{1}=-4, \alpha_{2}=-1$ $\operatorname{dim}\left(E_{-4}(A)\right)=3$ for each Eigen value the $\operatorname{dim}\left(B_{-1}(A)\right)=3$ abehraic nim liplicity equals the geometric ansltiplicity.

Question 4:
classify $A l l \prime$ ' 5×5 matrices ch $\left(A^{2}+\frac{T}{5}\right)(A-3 I)=O_{5 \times 5}$
let $f(\alpha)=\left(\alpha^{2}+1\right)(\alpha-3) \quad\left[\begin{array}{l}\text { Note: since dep }\left(l_{1}\left(A_{1}(\alpha)\right)=5\right. \\ \text { id must have a real }\end{array}\right]$
Hen \quad in $(\alpha) \mid f(\alpha)$

$$
\begin{array}{lll}
\text { Hen } & m_{A}(\alpha) \mid f(\alpha) \\
\text { so } & m_{A}(\alpha)=(\alpha-3) & \text { or } \\
& m_{A}(\alpha)=\left(\alpha^{2}+1\right)(\alpha-3) \\
& (\alpha)=(\alpha-3)^{5} & C_{1}(\alpha)=(\alpha+1)^{2}(\alpha-3)^{1} \text { or }
\end{array}
$$

$$
C(\alpha-3) \oplus C(\alpha-3) \oplus C(\alpha-3)
$$

$$
\left\lvert\, \begin{array}{rl}
A & C\left(\left(\alpha^{2}+1\right)(\alpha-3)\right) \\
& \oplus C\left(\alpha^{2}+1\right)
\end{array}\right.
$$

note: $m_{A}(\alpha) \neq\left(\alpha^{2}+1\right)$ bes A has at least one real eigen value and all eigen values of A are roots of $m_{A}(d)$.

Question 5:
$T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a symmetric linear transformation.
let A be the standard matrix representation of T
A is symmetric $\Rightarrow A=A^{\top}$
a, b are distinct eigenvalues of T
$V \in E_{a}(A)$ so $A V=a V$
$w \in F_{b}(A)$ io $A W=b w$
we know that $T^{a}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ s, $t: \forall v \in \mathbb{R}^{n}, w \in \mathbb{R}^{n}$

$$
\langle T(v), w\rangle_{R^{n}}=\left\langle v, T^{a}(w)\right\rangle_{\mathbb{R}^{n}}
$$

since we are using the normal dot product on $\frac{R^{n}}{T}$

$$
\begin{aligned}
& \text { e we are using the nominal dit produce on } \mathbb{K}^{\top} W \\
& \text { if } T(V)=A V \text { then } T^{a}(W)=A^{\top} W
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \langle T(v), w\rangle=\left\langle v, T_{1}^{a}(w)\right\rangle \\
& \langle A v, w\rangle=\left\langle v, A^{\top} w\right\rangle \\
& \langle a v, w\rangle=\langle v, A w\rangle \\
& a\langle v, w\rangle=\langle v, b w\rangle=\bar{b}\langle v, w\rangle \\
& \begin{array}{l}
\left.a\langle v, w\rangle=b\langle v, w\rangle \quad \begin{array}{c}
\text { since } A \text { is symumbric } \\
\text { then all Eigen values } \\
\text { of } A \text { are real }
\end{array}\right) .
\end{array} \\
& \left(\begin{array}{l}
a-b)\langle v, w\rangle=0 \\
a+b
\end{array}\right. \\
& \text { hut } a \neq b \text { their }\langle v N\rangle=0
\end{aligned}
$$

since neither W_{1} nor ss are the zero vector vel conclude they are orthogonal.

Chorion $65 T: \mathbb{R}^{2} \rightarrow \ell_{2}$

$$
T(a, b)=(b+a \cdot c)^{x}+3 a
$$

Define $\left\langle f_{1}, l_{2}\right\rangle p_{2}=\int_{0}^{1} f_{1} f_{2} d x$ and $\left\langle q_{1} q_{2}\right\rangle R_{R}=q_{1} q_{2}$
Find T^{a} (the adjoint op prater of T).
Dive,

$$
\begin{aligned}
& T_{1}^{a} P_{2} \rightarrow \mathbb{R}^{2} \\
& T^{(}(c x+d)=(m, n) \\
& \langle T(a, b) i c x+d)\rangle_{P_{2}}=\langle(a, b),(m, n)\rangle_{\mathbb{R}^{2}} \\
& \langle(b+2 a) x+3 a, c x+d\rangle=a m+b n \\
& \frac{b c}{3}+\frac{b d}{2}+\frac{2 a c}{3}+\frac{2 a d}{7}+\frac{3 a c}{2}+3 a d=a n+b n \\
& b\left[\frac{c}{3}+\frac{d}{2}\right]+\frac{a}{3}\left[\frac{2}{3} c+d+\frac{3}{2} c+3 d\right]=a(m)+b(n) \\
& n=\frac{c}{3}+\frac{d}{2} \\
& m=\frac{2}{3} c+d+\frac{3}{2} c+3 d=\frac{13}{6} c+4 d
\end{aligned}
$$

Hence $T^{a}(x+d)=\left(\frac{13}{6} c+4 d, \frac{c}{3}+\frac{d}{2}\right)$

